Question	Answer	Mark
1(a)(i)	$16 \mu\text{m} \left[\text{accept } \pm 1\mu\text{m}\right] \tag{1}$	1
1(a)(ii)	Use of $\lambda_{\rm max} T = 2.898 \times 10^{-3}$ (1)	2
	Temperature = $180 \text{ K} (\text{ecf from } (a)(i))$ (1)	2
	[161 K for 18 µm, 170 K for 17 µm, 193 K for 15 µm, 207 K for 14 µm]	
	Example of calculation	
	$_{T}$ 2.898×10 ⁻³ mK 181K	
	$I = \frac{16 \times 10^{-6} \text{ m}}{16 \times 10^{-6} \text{ m}} = 181 \text{ K}$	
1(b)	Mass of the Sun (1)	
	G Or gravitational constant Or 6.67×10^{-11} (N m ² kg ⁻²) (1)	2
	[can be next to either answer prompt]	
1(c)	Use of $a = \frac{GM}{(1)}$	
	$\frac{1}{r^2}$	
	Field strength = $5.6 \times 10^{-6} \text{ N kg}^{-1}$ [accept m s ⁻²] (1)	2
	Example of calculation	
	$a = \frac{6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2} \times 1.9 \times 10^{27} \text{ kg}}{6.67 \times 10^{-6} \text{ Nkg}^{-1}}$	
	$\left(1.5 \times 10^{11} \mathrm{m}\right)^2$ = 5.05×10 Mkg	
	Total for question	7

Question	Answer		Mark
Number			
2 (a)(i)	Use of $\lambda_{max}T=2.898 \times 10^{-3}$	(1)	
	Correct answer	(1)	(2)
	Example of calculation:		
	$T = \frac{2.898 \times 10^{-3} \text{ mK}}{5.2 \times 10^{-7} \text{ m}} = 5570 \text{ K}$		
2(a)(ii)	Use of $F=L/4\pi d^2$	(1)	
	Correct answer	(1)	(2)
	Example of calculation:		
	L = 1370 Wm ⁼² × 4 π × (1.49 × 10 ¹¹ m) ² = 3.8 × 10 ²⁶ W		
2(a)(iii)	Use of L= $4\pi r^2 \sigma T^4$	(1)	
	Correct answer (7.46 \times 10 ⁸ m)	(1)	(2)
	Example of calculation:		
	$3.82 \times 10^{26} \text{ W}$		
	$r^2 = \frac{5.82 \times 10^{-7} \text{ W}}{4 \times 10^{-8} \text{ W} + 32 \text{ W}^4 + (5570 \text{ W})^4} = 5.57 \times 10^{17} \text{ m}^2$		
	$4\pi \times 5.67 \times 10^{\circ} \text{ Wm}^{2} \text{K}^{-1} \times (5570 \text{ K})^{\circ}$		
	$r = \sqrt{5.57 \times 10^{17} m^2} = 7.46 \times 10^8 m$		
	$3.8 \times 10^{-26} \text{ W}$ $4 \times 10^{26} \text{ W}$		
	5570 K 7.46		
	6000 K 6.4		
2(b)	The answer must be clear, use an appropriate style and be organised in logical sequence	na	
QWC	High temperature AND high density/pressure	(1)	
	Any two reasons from		
	Overcome coulomb/electrostatic repulsion	(1)	
	Nuclei come close enough to fuse/for strong (nuclear) force to act	(1)	
	High collision rate/collision rate is sufficient	~ /	(max 3)
	T + 17	(1)	
	lotal for question		(9)

Question	Answer		Mark
Number 3(a)	\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}	(1)	
3(a)	Use of $P = 4\pi r^2 \sigma T^2$	(1)	2
	Power = 2.3×10^{17} W	(1)	2
	[Temperature in °C or incorrect conversion to Kelvin can score 1 st mark]		
	Example of calculation		
	$P = 4\pi (6.4 \times 10^{6} \text{ m})^{2} \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} \times (298 \text{ K})^{4}$		
	$\therefore P = 2.3 \times 10^{17} \text{ W}$		
3 (b)	$X = 6.4 - \pi = 2.000 - 10^{-3}$	(1)	
3 (D)	Use of $\lambda_{\text{max}}T = 2.898 \times 10^{-5}$	(1)	2
	$\lambda_{\rm max} = 9.7 \times 10^{-6} {\rm m}$	(1)	2
	[Temperature in °C or incorrect conversion to Kelvin can score 1 st mark]		
	Example of calculation		
	$\lambda_{\rm max} = \frac{2.898 \times 10^{-3} \text{ m K}}{298 \text{ K}} = 9.7 \times 10^{-6} \text{ m}$		
3 (c)	Infra-red (radiation/light/wave)		1
	[accept Infrared/IR]		
	Total for question		5

Question	Answer		Mark
4(a)	Use of $pV = NkT$	(1)	
		(-)	
	T = 870 (K) OR $p = 12.4$ (atmospheres)	(1)	2
	If final pressure is given as 1.24×10^6 Pa, then just "use of" mark		
	Example of calculation:		
	$T = \frac{pV}{Nk} = \frac{12 \times 1.0 \times 10^5 \text{ Nm}^{-2} \times 3.00 \times 10^{-4} \text{ m}^3}{3 \times 10^{22} \times 1.38 \times 10^{-23} \text{ JK}^{-1}} = 869.6 \text{ K}$		
	OR		
	$NkT = 3 \times 10^{22} \times 1.38 \times 10^{-23} \text{ JK}^{-1} \times 900 \text{ K}$		
	$p = \frac{1}{V} = \frac{3 \times 10^{-4} \text{ m}^3}{3 \times 10^{-4} \text{ m}^3}$		
	$\therefore p = 1.24 \times 10^6 \text{ Pa} = \frac{1.24 \times 10^6 \text{ Pa}}{3 \times 10^{-4} \text{ Pa}} = 12.4$		
4(b)*	(QWC – Work must be clear and organised in a logical manner using		
	technical wording where appropriate)		
	Atoms/molecules would gain energy	(1)	
	<u>Atoms/molecules</u> would escape from the liquid OR liquid propellant would vaporise / turn into gas OR the amount of gas in can would	-	
	increase	(1)	
	Pressure would increase due to both temperature/energy increase an increase in amount of gas	d	
	OR pressure would increase more for the same temperature increase		
	OR pressure would be greater than 12 atmospheres before 900 K	(1)	Max 2
	Can would explode before 900 K reached	(1)	IVIAX S
	Total for question	(-/	5

Question	Answer		Mark
Number			
5(a)	Max 4		
	Assumption: that no energy is transferred to the surroundings OR all energy to the surroundings of all energy to the surroundings of the surroundi	cgy	
	of container is neglicitle OP no water evenerates	(1)	
	of container is negligible OK no water evaporates	(1)	
	Measure the mass of the washers and water (using a balance)	(1)	
	(Use a thermometer to) measure the temperature of the water before and		
	after the washers are plunged into the water	(1)	
		(-)	
	Equate thermal energy lost by steel to the energy gained by water	(1)	
			Max 4
	Use a (standard) value for the specific heat capacity of the water		
	OR specific heat capacity of water is known	(1)	
5(b)(i)	Infra-red	(1)	1
5(b)(ii)	Use of λ_{max} T=2.898 × 10 ⁻³	(1)	
	$T = 1450 (\text{K})$ OR $\lambda_{\text{max}} = 1.93 \times 10^{-6} (\text{m})$	(1)	2
	Example of calculation		
	$2.898 \times 10^{-3} \text{ mK}$		
	$T = \frac{1450 \text{ K}}{2 \times 10^{-6} \text{ m}} = 1450 \text{ K}$		
5(b)(iii)	Use of $I = 4\pi r^2 \sigma T^4$	(1)	
	Correct substitution of radius	(1)	
	L = 1970 W [2250 W if show that value used]	(1) (1)	3
		(-)	
	Example of calculation		
	$L = 4\pi \times (2.5 \times 10^{-2} \text{ m})^2 \times 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4} (1450 \text{ K})^4 = 1970 \text{ W}$		
5(b)(iv)	Curve with higher peak	(1)	
	Shifted over to left	(1)	2
	lotal for question		12

Question Number	Answer		Mark
6(a)	(B2 =) 2.9×10^{-3} /A2 Or (B2 =) 2.9×10^{-3} / λ_{max} Or (B2=) 2.9×10^{-3} /6.85 $\times 10^{-7}$	(1)	1
6(h)	Use of $L = \sigma T^4 A$	(1)	
0(0)	$A = 0.21(48) \times 10^{19} \text{ (m}^2)$	(1)	2
	$\mathbf{M} = 0.21(10) \times 10^{-1} (\mathbf{M})$	(1)	-
	For max 1		
	Use of $A = 4\pi R^2$ to give $A = 2.1(1) \times 10^{18} \text{ (m}^2)$		
	Example of calculation:		
	$0.392 \times 10^{26} \text{ W m}^{-2}$		
	$A = \frac{1}{5.67 \times 10^{-8} \text{ W m}^{-4} \text{ K}^{-4} \times (4230 \text{ K})^{4}} = 2.148 \times 10^{10} \text{ m}^{2}$		
6(c)	Flux/brightness/intensity measured and distance to star determined	(1)	
0(0)	Trux/originaless/intensity measured and distance to star determined	(1)	
	(Luminosity calculated using) $L = 4\pi d^2 F$	(1)	
		(-)	
	Alternative mark scheme:		
	Temperature and type of star identified [e.g. main sequence]	(1)	
	Hertzsprung-Russell diagram used to find luminosity	(1)	2
	Theresprong-Russen diagram used to find funniosity	(1)	<u> </u>
	Total for question		5

.

PhysicsAndMathsTutor.com

7(b)(i)	$T = 11\ 500\ \text{K}\ (\text{allow}\ 11\ 250\ \text{K}\ \text{to}\ 11\ 750\ \text{K})$	(1)	1
7(b)(ii)	At least 2 pairs of values read from graph	(1)	
	Use of $\lambda_{\max} T = \text{constant}$	(1)	
	Use values to show $\lambda_{\max} T = a \text{ constant}$	(1)	3
	Example of calculation:		
	$\lambda_{\rm max} T = 0.25 \times 10^{-6} \times 11500 = 2.9 \times 10^{-3}$		
	$\lambda_{\rm max} T = 0.5 \times 10^{-6} \times 5800 = 2.9 \times 10^{-3}$		
7(c)(i)	A standard candle is a (stellar) object of known luminosity		1
*7(c)(ii)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	Standard candle's flux/ brightness (on Earth) is measured/determined	(1)	
	Use inverse square law [Reference to $F=L/4\pi d^2$ with symbols defined]	(1)	
	(Hence) distance to standard candle is calculated/determined	(1)	3
	[do not accept "measure" or "find" for "calculate"]		
	[accept a re-arrangement of $F = L/4\pi d^2$ with d as subject as indication that d is calculated]		
7(c)(iii)	Idea that trigonometric parallax is the change in position of a star against the background of more distant stars		
	Or parallax angle is the angle subtended at the star by the radius of the Earth's orbit	<u>(1)</u>	
	[Mark can be obtained from a fully labelled diagram]	(-)	
	If star is too distant the angle is too small to measure	(1)	2
	Total for Question		12

Question	Answer		Mark
Number			
8(a)	Max 6 The young star cluster consists (mainly) of main sequence stars	(1)	
	The old star cluster has a truncated main sequence	(1)	
	The old star cluster has lost its heaviest main sequence stars	(1)	
	The old star cluster has (many) red giant stars	(1)	
	The old star cluster has (some) white dwarf stars	(1)	
	Massive main sequence stars are the first stars (to deplete sufficient hydrogen in their core) to evolve into red giant stars.	(1)	
	Some red giant stars have evolved into white dwarf stars in the old cluster	(1)	6
9 (L)(C)		(1)	U
ð(U)(I)	Star A is closer to Earth than Star B	(1)	1
8(b)(ii)	Earth		
	$1.5 \times 10^{11} \text{ m}$ θ δ Star		
	Use of appropriate trigonometric relationship	(1)	
	$d = 4.0 \times 10^{16} \mathrm{m}$		
	Example of calculation: $ain \rho = 1.5 \times 10^{11} \text{ m}$	(1)	2
	$\frac{\sin \theta}{d} = 4.01 \times 10^{16} \mathrm{m}$		
8(c)	$\lambda_{\rm max} = 1.0 \times 10^{-6} \rm m$	(1)	
	Use of $\lambda_{\text{max}} T = 2.9 \times 10^{-3}$	(1)	
	T = 2900 K	(1)	3
	Example of calculation: $T = 2.9 \times 10^{-3} \text{ m K}/1.0 \times 10^{-6} \text{ m} = 2900 \text{ K}$		
	Total for question		12